Характеристика продукции, сырья и полуфабрикатов. Маргарин – пищевой жир из растительных и животных жиров, имеющий вид сливочного масла. При комнатной температуре маргарин имеет пластичную твердообразную структуру, которая представляет собой дисперсную систему эмульсии типа «вода в жире». Дисперсной средой этой системы является жировая основа, а дисперсной фазой – водномолочная смесь, содержащая водорастворимые компоненты.

Маргарин преимущественно предназначен для непосредственного употребления в пищу в качестве бутербродного масла и в кулинарии для приправы вторых блюд, выпечки и жарения. Из-за высокого содержания воды (16…17 %), разрушения эмульсии при нагревании и незначительного срока хранения жиров маргарин имеет ограниченное применение в промышленной переработке. Для этой цели выпускают разнообразный ассортимент специальных жиров: кондитерский, хлебопекарный, кулинарный, комбижир, гидрожир и др. В таких жирах содержание влаги обычно не превышает 0,3 %, они не расслаиваются при нагревании и обладают повышенной стойкостью при хранении продукции, в состав которой входят.

Качество маргарина оценивают по физико-химическим показателям (массовая доля жира, белков, углеводов, воды, и др.) и по органолептическим свойствам. По массовой доле жира маргарины разделяют на высокожирные (столовый, молочный) – не менее 82 %, пониженной жирности (шоколадный) – не менее 62…65 % и низкокалорийные – 40…60 %. Маргарин должен иметь чистый вкус и аромат, сходные с вкусом и ароматом сливочного масла. Консистенция его должна быть однородной и пластичной, цвет – однородным по всей массе светло-желтым для окрашенного и белым для неокрашенного. При жарении маргарин не должен разбрызгиваться.

В жировую основу маргарина входят рафинированные дезодорированные растительные масла, животные жиры, пищевые саломасы и переэтерифицированные жиры. В жировую основу вводятся также жирорастворимые добавки (красители, ароматизаторы, консерванты, витамины) и повышающие стойкость эмульсии, эмульгаторы и фосфатидные концентраты с лецитином.

Молоко применяют в натуральном или сквашенном виде для придания маргарину вкуса и аромата сливочного масла. С этой же целью добавляют ароматизаторы, а также красители, придающие маргарину цвет сливочного масла. Для обеспечения полноты вкуса используются сахар и соль, которые также повышают стойкость продукта при хранении.

Особенности производства и потребления готовой продукции. Ведущими процессами в производстве маргарина являются диспергирование рецептурных компонентов, переохлаждение и кристаллизация эмульсии типа «вода в жире». Интенсивное диспергирование проводится до размера частиц 6…15 мкм. В результате резкого охлаждения эмульсии и интенсивной механической обработки тонкого охлажденного слоя продукта происходят сложные процессы кристаллизации и рекристаллизации триацилглицеринов – жировой основы маргарина, определяя важнейшие показатели качества готовой продукции – консистенцию, пластичность и температуру плавления.

В связи с ростом потребления маргариновой продукции важной задачей становится улучшение ее ассортимента и качества. Органолептические показатели маргарина должны быть такими, чтобы можно было широко использовать этот продукт в качестве бутербродного масла. Исследования показали, что решение этой задачи может быть достигнуто выпуском наливных маргаринов.

Тенденция к существенному увеличению выработки мягких марга­ринов, фасованных в коробочки из полимерных материалов, четко прослеживается во всех промышленно развитых странах. Доля таких маргаринов составляет от 70 до 90 % общего производства столовых маргаринов. Изготовляют также диетические мягкие бутербродные маргарины, в состав жировой основы которых (до 50 %) входят глицериды физиологически активной линолевой кислоты.

В последние годы за рубежом повышают требования к маслам бутер­бродного назначения. Основное требование – легкая намазываемость при использовании непосредственно из холодильника (10 °С) и сохра­нение твердости при комнатной температуре (20 °С). Такие намазыва­ющиеся столовые масла (жировые пасты) называют «спрэды». Они могут изготовляться на основе молочного жира или не содержать его. Жир­ность спрэдов колеблется от 20 до 95 %, преимущественно 20…40 %, что требует ввода в них специальных загустителей (мальтодекстрины, желатин и др.) За рубежом выпускают их под фирменными знаками.

Маргарины выпускают как в мелкой фасовке – в пачках массой 200, 250 и 500 г, так и в крупной (монолит) – в ящиках до 25 кг.

Стадии технологического процесса. Технология твердых маргаринов предполагает осуществление следующих процессов:

– дозирование;

– смешение с получением грубой эмульсии;

– переохлаждение, совмещенное с механической обработкой (в интервале температур, близких к температуре застывания жировой основы маргарина);

– структурирование в кристаллизаторах с образованием маргарина;

Технология мягких (наливных) маргаринов основывается на следующих процессах:

– получение эмульсии (для низкожирных маргаринов предусматривается двухстадийное эмульгирование);

– пастеризация эмульсии;

– переохлаждение эмульсии с одновременной механической обработкой;

– пластификация путем декристализации;

– кристаллизация переохлажденной эмульсии;

– упаковка в потребительскую и транспортную тару.

Характеристика комплексов оборудования. Начальная стадия технологического процесса производства маргарина выполняется с помощью автоматических весов, укомплектованные баками для дозирования, а также насосами-дозаторами (безклапанными и клапанными).

Следующий комплекс линии состоит из вертикальных цилиндрических смесителей, оборудованных мешалками специальной конструкции. Требуемая температура нагрева эмульсии поддерживается пароводяной смесью, подаваемой в рубашку.

Ведущий комплекс линии состоит из оборудования для переохлаждения, которое состоит из нескольких одинаковых цилиндров теплообменников, работающих последовательно, а также кристаллизаторов, в состав которых входят фильтр-гомогенизаторы, и несколько, последовательно соединенных на фланцах цилиндрических секций.

Завершающий комплекс оборудования линии содержит машины: фасовочные, для раскрывания ящика, укладки в него пачек маргарина и обандероливания ящиков с продукцией, которые связаны между собой конвейерами.

На рис. 3.16. показана машинно-аппаратурная схема линии производства маргарина.

Устройство и принцип действия линии. При получении маргарина рафинированные жиры дозируют в бак 14 , установленный на весах. В него же дозируют эмульгатор из бака 9 насосом 10 и маслорастворимые добавки (краситель, ароматизатор) из бака 11 насо­сом 12 . Молоко из бака 6 насосом 5, вода из бака 3 насосом 4, солевой раствор из бака 1 насосом 2, водорастворимые добавки (сахар и др.) из бака 7 насо­сом 8 перекачиваются в бак 15 , установленный на весах.

Рис. 3.16. Машинно-аппаратурная схема линии производства маргарина

Взвешенные компоненты насосами 13 и 16 направляются в первые два смесителя 11 . Полученную смесь подвергают рецир­куляции с помощью насоса-эмульсатора 18 в течение 15 мин. Температура в смесителях устанавливается в зависимости от физических свойств жиров. Насос эмульсатор 17 представляет собой плунжерный насос высокого давления со специальным гомогенизирующим вентилем. В нем имеется диафрагма с небольшим отверстием, через которое продавливается рецептурная смесь, поступающая в смеситель 17 . В результате обработки в насосом-эмельсаторе 18 происходит диспергирование жировых шариков, таким образом, грубая эмульсия превращается в тонкую.

Полученную тонкую эмульсию насосом-эмульсатором 18 направ­ляют в третий смеситель 17 . Отсюда насосом 19 через двойной фильтр 20 она подается в уравнительный бак 21. Передача эмульсии в четырехцилиндровый переохладитель 23 осуществля­ется при помощи насоса высокого давления 22. В начальный период работы линии, когда еще не установился стабильный режим, маргариновая эмульсия из переохладителя 23 направляется в бак возврата 31. Переохладитель (вотатор) 23 является одним из основных аппаратов для получения маргариновой продукции и предназначен для образования пластичной структуры продукта в результате тонкого эмульгирования, охлаждения и механической обработки маргариновой эмульсии. Цилиндры переохладителя выполнены из нержавеющей стали и оснащены рубашками для хладагента (жидкого аммиака). Внутри каждого цилиндра находится вращающийся барабан (частота вращения 500 мин ‑1), на поверхности которого установлены ножи-скребки. При вращении барабана они снимают и перемешивают слой эмульсии, намерзающий в зазоре между стенками цилиндра и барабана.

Во время работы переохладителя 23 поддерживается давление эмульсии 1,5…3,5 МПа. Температура эмульсии на входе в переохладитель 38…40 °С, на выходе – 10…13 °С и зависит от состава жирового набора и режима охлаждения. Потоки эмульсии, выходящие из переохладителя, распределяются в зависимости от способа упаковки и производительности упаковочного оборудования.

При мелкоштучной упаковке продукции охлажденная эмульсия через распределительное устройство 30 и фильтры-структураторы 29 подается в кристаллизаторы 28 . В последних эмульсия превращается в уплотненную пластичную массу маргарина, которая подается в машину 26 для фасования брикетов маргарина в пачки из пергамента. Далее эти пачки конвейерами 25 передаются в машины 24 для упаковки в ящики. Избыток продукта отводится через компенсирующее устрой­ство 27 в бак возврата 31, откуда расплавленная эмульсия насо­сом 32 перекачивается в третий смеситель 17 . При выработке маргарина в блока, упакованных в ящики, переохлажденная эмульсия, минуя распределительное устройство, через фильтр 35 поступает в декристаллизатор 34, в котором в результате выделения скрытой теплоты температура маргарина повышается на 2…3 °С.

Из декристаллизатора 34 маргарин направляется в машину 33 для наполнения и взвешивания ящиков. Вначале до достижения не­обходимых параметров маргариновая эмульсия поступает в бак возврата 31. Ящики с продуктом подаются конвейером в обан­дероливающую машину, а затем на склад готовой продукции.

Маргарин — это продукт, который производится с использованием растительных масел и животных жиров. Он считается заменителем масла и используется для кулинарных целей как дома, так и в коммерческих хлебопекарнях и кондитерском производстве. Возможно его использование в пищу вместо сливочного масла. Хотя это совершенно два разных продукта. Что такое маргарин, как и из чего его производят, есть ли польза и какой вред он может принести узнайте ответы в данной статье.

Что такое маргарин

Маргарин – это пищевой продукт, полученный главным образом из одного или нескольких видов растительных масел или животных жиров, в котором водная часть диспергируется (эмульгируется). В его составе могут быть как твердые, так и жидкие молочные продукты, соль и другие ингредиенты.

Несмотря на возможное присутствие молочного жира, современный маргарин производят в основном из рафинированных растительных масел и воды.

Маргарин, как и масло, состоит из эмульсии типа «вода-жир», где крошечные капли воды равномерно распределены по всей массе в стабильной кристаллической форме.

Благодаря своей универсальности он используется в качестве одного из основных ингредиентов во многих видах выпечки.

Маргарин история изобретения

Маргарин является заменителем масла, изобретенным и запатентованным во Франции в 1869 году французским химиком Ипполитом Меже-Мурье. За 9 лет до этого император Наполеон lll поставил задачу создать альтернативный недорогой продукт вместо масла, чтобы накормить армию и простой народ.

Он предложил эмульгировать низкоплавкую часть говяжьего жира с молоком и сычужной вытяжкой из коровьего желудка. Первоначально свой продукт ученый назвал олеомаргарин, который позже был переименован просто в маргарин. Сегодня под таким названием он продается во всем мире и является общим термином для обозначения любого продукта из спектра схожих съедобных масел.

Происхождение названия связано с маргариновой кислотой, открытой еще в 1813 году французским химиком Мишелем Эжен Шеврелем. В то время эта кислота приравнивалась к трем основным жирным кислотам. Но в 1853 голу немецкий химик открыл, что она является просто смесью двух других: стеариновой и неизвестной до этого пальмитиновой кислот.

В 1871 году Мурье продал патент Голландской компании «Unilever». В том же году немецкий фармацевт из Кельна Бенедикт Клейн основал первый завод по производству маргарина «Бенедикт Клейн Маргаринуерке», производящий бренды Overstolz и Botteram.

Хотя развитие производства маргарина вначале шло не так быстро, но к концу 19 века его выпуск только набирал обороты. Вскоре он продавался как в Старом, так и Новом свете. В Советском Союзе производство этого продукта впервые было налажено только в 1930-1940 годах.

Первоначально основным сырьем для получения маргарина был только говяжий жир, доля которого составляла 80 процентов. Остальная часть – это вода.

В 1871 году Генри У. Брэдли из Бингемтона запатентовал получение маргарина из смеси растительных масел и животных жиров. К концу 19 столетия в Америке около 37 компаний занимались производством маргарина. Они постоянно сталкивались с противодействием производителей масла. Уже в конце 1877 года многие штаты в Америке приняли законы, ограничивающие продажу маргарина и ввели строгие правила к маркировке, чтобы избежать его представления за настоящее сливочное масло. В дополнение к этому к концу 1880 года правительство ввело налог в размере 2 центов на каждый фунт маргарина и дорогую лицензию на его производство или продажу.

Все это привело к сокращению выпуска данного продукта. Интересно, но основной претензией все же был его цвет. Естественный цвет маргарина белый. Для придания ему сливочного цвета добавляли красители, что делало его очень похожим на масло. Поэтому был введен запрет на добавление красителей, чтобы не путать его с маслом. Этот запрет в некоторых странах был снят практически только в наше время. Так, например, в Австралии только в 1960 году, а в провинции Квебек в Канаде в 2008 году.

Новое возрождение продукта началось с началом Первой мировой войны. Постепенно были сняты многие запреты на его производство и выпуск.

Из чего и как делают маргарин на заводе

Основным методом изготовления маргарина сегодня является эмульгирование смеси растительных масел и жиров, которые можно модифицировать с помощью фракционирования, переэтерификации и/или гидрирования с обезжиренным молоком, охлаждением смеси для ее затвердевания и обработкой для улучшения текстуры.

Современный маргарин может быть изготовлен из самых разных жиров и масел, которые смешивают с солью, обезжиренным молоком и эмульгаторами. Растительные смеси и жиры могут быть с различными температурами плавления. Допускается использование саломасов – твердых жиров, полученных из растительных масел.

Кроме жировой части в него добавляют соль, красители, эмульгаторы, ароматизаторы и другие компоненты для придания цвета, текстуры и вкуса.

Основным методом до недавнего времени была гидрогенизация, которая обладала одним существенным недостатком – повышенным содержанием транс-жиров. Поэтому сегодня более востребован метод переэтерификации. Такой переход на новую технологию обусловлен вредным влиянием на здоровье трансизомеров жирных кислот и в частности на сердечно-сосудистые систему. Благодаря этой технологии количество транс-жиров сокращается практически до нуля.

Производство маргарина включает в себя несколько основных этапов подготовки:

Основных растительно-жировых смесей;

Воды (или молока);

Дополнительных ингредиентов;

Эмульсии.

В зависимости от конечного содержания жира и его назначения, количество воды и используемых растительных масел немного различается. Масло отжимают из семян и очищают. Затем его смешивают с твердым жиром. Если твердые жиры не добавляются к растительным маслам, последние подвергаются полному или частичному процессу гидрирования для их затвердевания.

Полученную смесь смешивают с водой, лимонной кислотой, каротиноидами, витаминами и молочным порошком. В качестве эмульгатора чаще используют лецитин, который позволяет равномерно распределить водную фазу по всей жировой смеси. Кроме того, на этом этапе сразу добавляют соль и консерванты. Затем смесь нагревают, смешивают и охлаждают.

То, что маргарин делают из нефти, это миф. Видимо он идет от применения саломасов. Саломасы – это твердые жиры, полученные путем гидрогенизации жидких растительных масел.

Сырьем для изготовления служат растительные масла, такие как:

Подсолнечное;

Пальмовое;

Пальмоядровое;

Рапсовое;

Кокосовое;

Оливковое;

Арахисовое;

Хлопковое;

Масло какао. Используют, правда редко, молочный жир, сухое молоко.

Дополнительными компонентами могут быть:

Витаминные добавки;

Ароматизаторы;

Красители;

Эмульгатор;

Консерванты.

Виды маргарина классификация

В каждой стране есть свои стандарты на производство данного вида масло-жировой продукции. Существует он и у нас. Маргарины у нас производятся по ГОСТу 32188-2013, который также действует на территории стран СНГ таких, как Киргизстан, Таджикистан, Узбекистан.

Согласно этого ГОСТа маргарин определяется как «эмульсионный продукт с массовой долей жира не менее 20%, состоящий из немодифицированных и (или) модифицированных растительных масел с (или без) животными жирами, с (или без) жирами рыб и морских млекопитающих, воды с добавлением или без добавления молока и (или) продуктов его переработки, пищевых добавок и других пищевых ингредиентов».

В зависимости от консистенции он подразделяется на:

Твердый – продукт, который имеет пластичную плотную консистенцию и сохраняет свою форму при температуре 20±2 градуса;

Мягкий – продукт, который имеет пластичную мягкую консистенцию при температуре 10±2 градуса;

Жидкий – продукт, сохраняющий однородную жидкую консистенцию и свои свойства.

Для более мягкого маргарина используются более жидкие масла и менее гидрогенизированные.

По потребительским качествам маргарин классифицируется:

Таблица 1

По внешнему виду, консистенции, плотности и органолептическим свойствам он должен соответствовать:

Таблица 2

Таблица 3

Что входит в состав маргарина пищевая ценность

Состав конкретного вида маргарина зависит от используемой для его производства жировой смеси. Дополнительные ингредиенты предназначены для придания вкуса, цвета и текстуры готового продукта. В целом в этом нет большого различия. Пищевая ценность маргарина – это в первую очередь калории. Калорийность маргарина во многом зависит от состава растительных масел из которых его делают. В среднем она составляет от 620 до 750 калорий.

В 100 граммах стандартного маргарина может содержаться до:

2 % углеводов.

Белка в нем практически нет. На его долю приходится менее 1%. Так как при производстве используют соль, то в нем присутствует натрий (до 47%).

Кроме того, в маргарине есть витамины и минералы, наличие которых также во многом зависит от растительных масел. Помимо этого, его часто обогащают витамином А, Е и D (в основном сорта, предназначенные для замены сливочного масла).

В качестве консерванта чаще всего добавляют бензойную, сорбиновую или лимонную кислоту.

Чтобы обеспечить более длительный срок хранения и предотвратить окисление масел, добавляют разрешенные на нашей территории антиоксиданты.

Так как маргарин – это эмульсия, то эмульгаторы являются одними из главных компонентов. Наиболее часто используют моноглицериды жирных кислот, полученные из животного жира или растительных масел. Иногда применяют лецитин, чаще всего соевый.

Эмульгаторы играют важную роль в способности намазывания продукта на хлеб, разбрызгиваться при нагреве, определяют срок годности и, главное, его вкусовые качества.

Сегодня можно купить маргарин не только белого цвета или желтого, но и розовый и других цветов. Для этого применяют красители, разрешенные в пищевой промышленности. Кроме того, есть шоколадный маргарин с маслом какао бобов.

Польза маргарина

К сожалению, маргарин в последние годы все больше представляют, как не совсем здоровый продукт, а порой очень вредный. Современный маргарин делают совершенно по другой технологии и вредных транс-жиров в зависимости от вида в нем совсем немного.

Его польза для здоровья зависит от того, какие растительные масла он содержит и как они обрабатывались.

Содержит полиненасыщенные жиры

Большинство видов маргарина содержат много полиненасыщенных жиров. Точное количество зависит от того, какие растительные масла использовались для его производства.

Например, маргарин на основе соевого масла может содержать приблизительно 20% полиненасыщенного жира.

Полиненасыщенные жиры обычно считаются здоровыми. Они могут быть полезны для здоровья сердца. Замена насыщенных жиров полиненасыщенными может снизить риск развития заболеваний сердца, но не оказывают влияние на риск смерти от таких болезней.

Может содержать растительные стеролы и станолы

Станолы и стеролы относятся к растительным фитостеролам. Они содержатся во всех маслах. Фитостеролы снижают общий и «плохой» холестерин.

Омега-3 жирные кислоты

Это семейство жирных кислот относится к полиненасыщенным жирам. В организме человека они не образуются и их нужно пополнять с пищей.

К сожалению, такие жирные кислоты встречаются больше в рыбе, а не в растениях. Только в некоторых сортах растительного масла, например, в льняном, можно найти представителя Омега-3 в виде альфа-линоленовой кислоты. Конопляное масло содержит около 20% этой кислоты. Небольшое количество обнаружено в соевом, рапсовом и масле зародышей пшеницы. Их могут добавлять к дорогим маркам маргарина.

Вред маргарина

Несмотря на то, что многие виды маргарина содержат полезные полиненасыщенные жиры и фитостеролы, обогащены дополнительно необходимыми витаминами, многие диетологи придерживаются мнения, что вред от него все же есть.

Ненасыщенные жиры

Как показывают многие исследования, потребление ненасыщенных жиров может снижать уровень литопротеинов низкой плотности, т.е. плохого холестерина. Что в свою очередь снижает риск сердечно-сосудистых заболеваний.

Но ненасыщенные жиры представлены полиненасыщенными и мононенасыщенными жирами. Некоторые виды растительного масла, которые наиболее часто используют при производстве, богаты такими жирами.

Во время подготовки для производства маргарина производители могут превращать некоторые ненасыщенные жиры в гидрогенизированные или транс-жиры. От наличия транс-жиров зависит плотность и температура плавления маргарина. Больше всего их в твердом маргарине, который сохраняет свою форму при комнатной температуре. Меньше в мягких видах или вообще могут отсутствовать.

Омега-6 жирные кислоты

Омега-6 жирные кислоты важны для здоровья как и Омега-3. Их очень много во многих маслах, включая оливковое, подсолнечное, хлопковое. кукурузное и другие.

Оптимальное соотношение Омега-3 и Омега-6 должно быть примерно 1:1. Однако современный рацион питания многих людей содержит слишком много Омега-6, но в то же время испытывает дефицит Омега-3. Фактически соотношение Омега 6 к Омега-3 в развитых странах оценивается как 20:1, в лучшем случае 5:1 или 10:1.

Как показывают исследования, высокое потребление Омега-6 связано с повышенным риском ожирения и хронических заболеваний, таких как сердечно-сосудистые, воспаления кишечника.

К тому же высокое содержание Омега-6 уменьшает эффект от Омега-3. Поэтому рекомендуется, чтобы соотношение этих жирных кислот было ближе 4:1.

Насыщенные жиры

Растительные масла, как правило, содержат небольшой процент таких жиров. Меньше его в жидких маслах. В тропических маслах, которые могут быть в твердом состоянии при определенной температуре, таких как кокосовое, пальмовое, содержание выше. В маргариновой смеси обычно содержатся оба типа масел.

Типичный мягкий маргарин может содержать их от 10 до 20 процентов. Тогда как в твердом – от 52 до 65 процентов.

Насыщенные жиры повышают риск сердечно-сосудистых и некоторых других заболеваний. Поэтому рекомендуется как можно меньше включать их в свое питание.

Транс-жиры

В отличие от незаменимых жирных кислот, транс-жиры не обладают существенной пользой для здоровья человека и не дают ничего кроме калорий.

Существует связь между транс-жирами и повышенным холестерином. Следовательно, есть риск ишемической болезни сердца, и некоторыми другими болезнями.

В начале 1990 многие страны стали отказываться от использования частично гидрогенизированных жиров. Это привело к созданию новых сортов маргарина, которые содержат минимальное количество транс-жиров или не содержат их совсем.

Холестерин

Высокий уровень холестерина, особенно ЛПНП, связан с повышенным риском развития атеросклероза и атеромы. Сужение кровеносных сосудов может привести к снижению притока крови к мозгу, сердцу, почкам и другим частям тела. Холестерин, хотя и необходим для метаболизма, не является существенным в рационе.

Печень человека способна вырабатывать его до 80 процентов самостоятельно. Остальные 20 процентов поступают с пищей. Холестерин из пищи оказывает меньшее влияние на его уровень в крови, чем тип потребляемого жира.

Большинство видов маргарина не содержит холестерина. Гораздо больше его в сливочном масле. И все же тем людям, которым важен этот показатель, должны ограничить употребление маргарина, особенно твердого.

Вред маргарина заключается не только в жирах и жирных кислотах. Помимо этого, в нем присутствуют другие химические составляющие в виде консервантов и прочее. Многие из таких ингредиентов не перевариваются организмом человека.

Если вы часто едите гидрогенизированный жир, может нарушиться обмен веществ. Есть вероятность снижения иммунной защиты, развития диабета 2 типа, рака и сердечно-сосудистых заболеваний.

У кормящих женщин ухудшается качество грудного молока. А его употребление во время беременности грозит родить недоношенного ребенка.

Не менее опасен он для мужчин, у которых при частом употреблении ухудшается качество семенной жидкости, замедляется воспроизводство тестостерона и увеличивается риск бесплодия.

Применение маргарина в кулинарии

Маргарин по сей день служит одним из основных жиров в кондитерской и пищевой промышленности. Его добавляют в печенье, хлебобулочные изделия, мороженое, торты и прочее.

По сравнению с промышленным применением гораздо реже он используется в домашней кулинарии. Многие хозяйки все же предпочитают ему масло.

Выпускают специальные бутербродные виды маргарина как заменители сливочного масла.

Как выбрать маргарин

Выбор маргарина в первую очередь зависит от назначения. Маргарин с низким содержанием жира нельзя использовать для выпечки. Из-за высокого содержания воды ваша выпечка может не получиться. Для такого случая нужно покупать твердый, который хорошо сохраняет свою форму. Такой маргарин обычно упакован в фольгу или пергамент.

Для бутербродов вместо сливочного масла подходит мягкий, тот, что расфасован в пластиковые коробочки.

При покупке нужно обращать внимание из каких масел он произведен, дату выпуска и срок годности.

На упаковке должны быть сведения о его энергетической ценности, дате производства, сроке и условиях хранения.

В целом, маргарин во многом похож на сливочное масло. Они имеют сходный химический состав, вкус, запах и, конечно же, консистенцию. Несмотря на это, популярность маргарина, начиная с 90- годов прошлого столетия, падает во всем мире. Именно в это время стали появляться первые сведения о негативном влиянии данного продукта на здоровье человека.

Несмотря на то, что многие производители маргарина больше не используют частичное гидрирование, падение популярности и спроса продолжается, в то время как потребление масла неуклонно растет.

Объяснение этому может заключаться в нескольких факторах:

  • Существует потеря доверия к тому, из чего делают его. Около 100 лет он содержал большое количество транс-жиров. Существующая сегодня технология не способствует восстановлению доверия.
  • Одним из наиболее противоречивых ингредиентов является использование генетически модифицированных компонентов, таких как соевое или кукурузное масло. Сочетание всех этих ингредиентов заставило многих людей перейти на натуральное масло.
  • Потеря популярности кампаний против насыщенных жиров. Обилие доказательств в течение последних нескольких десятилетий, что диетические насыщенные жиры фактически безвредны, увеличивают потребление животных жиров, включая масло.
  • Свидетельства о вредном воздействии Омега-6 жирных кислот, на которые он богат. Маргарин больше не рассматривается как здоровая альтернатива маслу.
  • Рост популярности диет с высоким содержанием углеводов, которая поддерживается и пропагандируется многими специалистами в области питания.

Нужно ли вам заменять сливочное масло маргарином, использовать его в выпечке, для жарки и других целей, решать только вам.

Продукт, без которого в советские времена не обходились ни на одной кухне, сегодня постепенно вытесняют из прилавков магазинов. Тенденцию к снижению популярности связывают с присутствием в его составе вредных для здоровья человека транс-жиров. Однако добросовестные производители выпускают полезный продукт, который пользуется стабильным спросом.

Технологический процесс производства маргарина

Перед началом производственного процесса необходимо ознакомиться с ГОСТом Р 52179-2003 — Маргарины, жиры для кулинарии, кондитерской, хлебопекарной и молочной промышленности. В случае изготовления продукции в соответствии с указанным нормативным документом, на упаковке должна быть отображена данная информация.

Основными составляющими готового продукта являются:

  • вода, молоко и сливочное масло;
  • витамины (A, D2, D3, С) и консерванты (бензойная, лимонная, молочная и сорбиновая кислоты);
  • эмульгаторы (не более 0, 6%) для соблюдения заданной консистенции продукта и обеспечивается стойкость в процессе хранения;
  • ароматизаторы, натуральные красители и антиокислители (0,02%);
  • соль и сахар.

Производство маргарина включает следующие этапы:

1. Подготовка сырья

Жиры следует хранить в отдельных емкостях (не более суток). Сливочное масло помещают в плавильные емкости, а эмульгаторы растворяют в растительном масле. Молоко подлежит пастеризации, охлаждению и окрашиванию.

2. Изготовление эмульсии

Все компоненты перемешиваются в цилиндрическом смесителе .

3. Приготовление маргарина

Транспортировка массы в переохладитель и кристаллизатор (для придания твердости, однородности и пластичности).

4. Расфасовка посредством разливочно-упаковочного агрегата

Пачки упаковывают в ящики (картонные либо фанерные). В случае розничной торговли, маргарин расфасовывают брусками, после чего его заворачивают в пергамент. На стадии маркировки в обязательном порядке наносят достоверную информацию на этикетку, а именно товарный знак, наименование производителя, его адрес, массу нетто, перечень компонентов, пищевую ценность, дату изготовления, срок хранения и номер стандарта. Срок хранения напрямую зависит от вида упаковки и температурного режима (45-120 дней).

Линия по производству маргарина включает множество агрегатов, основными из них являются:

  • емкости для хранения исходного сырья и подготовки основных составляющих;
  • плавильная камера, ванна для пастеризации и плавления рецептурных компонентов (120-500 тыс. руб. Рис. ванна для плавления) ;
  • цилиндрический смеситель;
  • упаковочный автомат и т.д.

Общая стоимость технологической линии составляет порядка 2 млн. рублей.

По назначению различают столовый (например, Российский) и бутербродный (Славянский) маргарин, а также продукт для промышленной переработки. В последнем случае в нем содержатся разрыхлители, поэтому использовать его в пищу не рекомендуется. По консистенции различают твердый, мягкий и жидкий продукты.

Разновидности маргарина и основные требования к продукту

Маргарин, как и любой другой продукт длительного хранения, имеет в своем составе консерванты. Однако они должны быть натуральными (аскорбиновая кислота или витамин Е). Согласно ГОСТу Р 52178-2003, максимальный срок хранения продукта составляет 120 суток (4 месяца). Если производитель обещает хранить маргарин 1 год без потери вкусовых качеств, то без синтетических консервантов в этом случае явно не обошлось (Е202 – Сорбат калия, Е211 – Бензоат натрия). Данные компоненты могут стать причиной аллергии. На сегодняшний день уровень транс-жиров нормируется (не более 8%). Поэтому присутствие продуктов технической переработки в маргарине находится на предельно низком уровне. Без их использования невозможно получить твердую консистенцию продукта.

Описание

Технология производства маргарина и спреда на данном оборудовании: Компоненты жировой и водной фазы в соответствии с рецептурой смешиваются в соответствующих вертикальных цилиндрических смесителях, в которых происходит также предварительное эмульгирование. Сухие компоненты и ингредиенты взвешиваются на автоматических весах и перекачиваются насосами в соответствующий смеситель. Необходимые жиры подаются блоками в жиротопку, где растапливаются и перекачиваются насосом частично в смеситель жировой фазы и частично (согласно рецептуре) в танки для эмульгирования. Температура внутри жиротопки поддерживается благодаря циркуляции воды через водяную рубашку и внутреннюю решетку. Узел темперирования обеспечивает нагрев воды до заданной температуры через теплообменник вода/пар (подача пара обеспечивается Заказчиком). Внутри смесителей жировой и водной фазы находятся винтовые мешалки пропеллерного типа с частотой вращения согласно заданной рецептуре. Смеситель снабжен водяной рубашкой для теплоизоляции. Заданная рецептурой температура смесей в смесителях жировой и водной фазы поддерживается благодаря циркуляции смеси через пластинчатые теплообменники. Теплообмен происходит с внешней водой (обеспечивается заказчиком). Грубая эмульсия из смесителей жировой и водной фазы поступают в танк для эмульгирования (получения стабильной гомогенной эмульсии молочно-растительной смеси. В данном танке эмульсия в течение заданного рецептом времени циркулирует через насос эмульсатор, и подогревается за счет подачи в водяную рубашку горячей воды, за счет чего обеспечивается интенсивное диспергирование эмульсии. Узел темперирования обеспечивает нагрев воды в водяной рубашке до заданной температуры через теплообменник вода/пар (подача пара обеспечивается Заказчиком). Для обеспечения непрерывной работы в описываемой технологической линии предусмотрены два танка для эмульгирования работающие поочередно. Далее готовая эмульсия поступает в трубчатый пастеризатор, где происходит термическая обработка эмульсии. Пастеризатор представляет собой теплообменник типа «труба в трубе» с теплоизоляцией. Средняя труба является рабочей камерой, во внутреннюю и внешнюю трубу подается горячая вода. Узел темперирования обеспечивает нагрев воды до заданной температуры через теплообменник вода/пар (подача пара обеспечивается Заказчиком). Охлаждение эмульсии после термической обработки происходит в охладителе конструкции, подобной пастеризатору. Средняя труба является рабочей камерой, во внутреннюю и внешнюю трубу подается холодная вода (обеспечивается Заказчиком). После охладителя маргариновая эмульсия, пройдя через уравнительный бак с насосом высокого давления, подается в переохладитель, который обеспечивает эмульгирование, охлаждение и механическую обработку эмульсии. Переохладитель состоит из трех одинаковых цилиндров - теплообменников, работающих последовательно. Каждый из цилиндров представляет собой теплообменник типа «труба в трубе» с теплоизоляцией. Первая внутренняя труба является рабочей камерой, в которой расположен полый вал. На валу закреплены ножи, которые, непрерывно вращаясь, счищают продукт с охлаждаемых поверхностей и одновременно перемешивают продукт. Пространство между второй и первой трубой и внутри полого вала занимают испарительные камеры для хладагента (фреон или аммиак, по запросу). Эмульсия, охлаждаясь, кристаллизуется на поверхности и снимается ножами. Для обеспечения однородной пластичной структуры эмульсию после глубокого охлаждения подвергают интенсивной механической обработке в линейном смесителе с помощью расположенных на центральном вращающемся валу и стенках смесителя стержнях. Затем эмульсия поступает в кристаллизатор, где ей придаются кристаллическая структура, требуемая твердость, однородность и пластичность, необходимые для фасовки продукта. Основными узлами кристаллизатора являются три секции - две конические и одна цилиндрическая, а также размещенные в центральной секции два тройных сетчатых экрана, при прохождении через которые продукту придается однородность. Полученный таким образом продукт подается в уравнительные емкости или бункеры с внутренним шнеком фасовочно-упаковочных машин, которые дозирует и расфасовывает маргарин в картонные короба, блоки или брикеты. При остановке упаковочной машины, продукт, во избежание остановки работы линии, по отводной трубе попадает в станцию переплавления, где растапливается и возвращается в танк для эмульгирования.  Состав оборудования для производства маргарина и спреда: 01. Станция для подготовки ингредиентов Материал: Нержавеющая сталь Конструкция: В соответствии со всеми требованиями к оборудованию, используемому в пищевой промышленности. Состав: Столы с автоматическими весами для взвешивания ингредиентов для жировой фазы и водной основы. 02. Жиротопка Материал: Нержавеющая сталь и другие материалы, пригодные для использования в пищевой промышленности. Размер: Требует уточнения. Размер жиротопки зависит от размеров используемых блоков продукта Конструкция: Двойная рубашка в стенках и дне плавителя. Двойная система циркуляции горячей воды, через двойную рубашку и через центральную решетку.Центральная решетка может быть извлечена из плавителя для чистки. Лопастной перемешиватель.Регулируемая рабочая высота машины. Контроль температуры и уровня продукта Назначение: Жиротопка предназначена для растопления твердых или замороженных блоков жира животного и растительного происхождения (масло сливочное, маргарин, какао-масло, шоколад, шоколадная глазурь и др.), и поддержания в расплавленном состоянии при заданной температуре. Мойка: CIP, распылительные моющие головки 02.1 Шкаф управления Материал: Нержавеющая сталь. Состав: Необходимые электрические компоненты и внутренняя система электропроводки 02.2 Система нагрева воды для двойной рубашки и центральной решетки Материал: Нержавеющая сталь. Состав: Два независимых трубчатых теплообменника (вода/пар). Насос для циркуляции воды. Система регулировки давления водяного пара (макс. 2бара). Трубопровод между теплообменником и плавителем. 03. Смеситель для жировой фазы Материал: Нержавеющая сталь Назначение: Смесительный танк предназначен для смешения сухих ингредиентов и компонентов с жировой основой. Конструкция и состав: Танк. Вертикальное расположение. Объем 100 литров. Танк в двойной рубашке с теплоизоляцией.Коническое дно. На дне размещены: выводное соединение продукта с соединительным фланцем типа DRD, датчик температуры, датчик нижнего уровня продукта, регулируемые по высоте опоры. Верхняя часть танка сферической формы. В верхней части танка размещены: вводные соединения для подачи продукта и CIP, распылительные моющие головки, датчик верхнего уровня продукта, фланец перемешивателя, смотровой лючок с датчиком контроля открытия, проушины для транспортировки танка. Средняя часть танка цилиндрической формы с размещенными на ней вводным CIP соединением и распылительными моющими головками. Перемешиватель специальной формы пропеллерного типа. 04. Система темперирования для смесителя жировой фазы Материал: Нержавеющая сталь. Конструкция: Платинчатый теплообменник. Нагрев до 20°С. Нагрев происходит за счет циркуляции продукта через теплообменник и теплообмена с горячей водой. Подача воды обеспечивается Заказчиком. Состав: Теплообменник. Все необходимые клапана и трубопровод. Управление: Интегрировано в центральный PLC 05. Насос для жировой фазы Материал: Нержавеющая сталь Назначение: Данный насос используется для перекачки жировой фазы из смесителя в танки для эмульгирования 1 и 2. Конструкция: Выполнен в соответствии с требованиями к оборудованию, применяемому в пищевой промышленности. 06. Смеситель для водной фазы Материал: Нержавеющая сталь Назначение: Смесительный танк предназначен для смешения сухих ингредиентов и компонентов с водной основой. Конструкция и состав: Танк. Вертикальное расположение. Объем 500 литров. Танк в двойной рубашке с теплоизоляцией. Коническое дно. На дне размещены: выводное соединение продукта с соединительным фланцем типа DRD, датчик температуры, датчик нижнего уровня продукта, регулируемые по высоте опоры. Верхняя часть танка сферической формы. В верхней части танка размещены: вводные соединения для подачи продукта и CIP, распылительные моющие головки, датчик верхнего уровня продукта, фланец перемешивателя, смотровой лючок с датчиком контроля открытия, проушины для транспортировки танка. Средняя часть танка цилиндрической формы с размещенными на ней вводным CIP соединением и распылительными моющими головками. Перемешиватель специальной формы пропеллерного типа. 07. Система темперирования для смесителя водной фазы Материал: Нержавеющая сталь. Конструкция: Платинчатый теплообменник. Нагрев до 20°С. Нагрев происходит за счет циркуляции продукта через теплообменник и теплообмена с горячей водой. Подача воды обеспечивается Заказчиком. Состав: Теплообменник. Все необходимые клапана и трубопровод. Управление: Интегрировано в центральный PLC 08. Насос для водной фазы Материал: Назначение: Нержавеющая сталь.Данный насос используется для перекачки водной фазы из смесителя в танки для эмульгирования 1 и 2. Конструкция: Выполнен в соответствии с требованиями к оборудованию, применяемому в пищевой промышленности. 09. Танк для приготовления эмульсии: Материал: Нержавеющая сталь Назначение: Два смесительных танка предназначенные в совокупности с насосом эмульсатором для приготовления эмульсий из жировой и водной фазы. Танки работают поочередно, т.е. в каждый момент времени один танк используется для приготовления эмульсии второй для подачи продукта далее по технологической линии. Конструкция и состав: Танк. Вертикальное расположение. Объем 2000 литров Танк в двойной рубашке с теплоизоляцией. Коническое дно. На дне размещены: выводное соединение продукта с соединительным фланцем типа DRD, датчик температуры, датчик нижнего уровня продукта, регулируемые по высоте опоры. Верхняя часть танка сферической формы. В верхней части танка размещены: вводные соединения для подачи продукта и CIP, распылительные моющие головки, датчик верхнего уровня продукта, фланец перемешивателя, смотровой лючок с датчиком контроля открытия, загрузочный люк для подачи стабилизаторов и эмульгаторов, проушины для транспортировки танка. Средняя часть танка цилиндрической формы с размещенными на ней вводным CIP соединением и распылительными моющими головками. Перемешиватель специальной формы пропеллерного типа. 10. Насос - эмульсатор Материал:Нержавеющая сталь Назначение: Насосом эмульсатор предназначен в совокупности с танками для приготовления эмульсий из жировой и водной фазы При приготовлении эмульсии продукт циркулирует через танк 1 или 2 и насос эмульсатор. Конструкция: Выполнен в соответствии с требованиями к оборудованию, применяемому в пищевой промышленности. 11. Насос для эмульсии Материал: Нержавеющая сталь Назначение: Данный насос используется для перекачивания полученной эмульсии далее по технологической линии на пстеризатор. Конструкция: Выполнен в соответствии с требованиями к оборудованию, применяемому в пищевой промышленности. 12. Пастеризатор Материал: Нержавеющая сталь Конструкция: Система тройных труб. Три трубы вложены друг в друга. Внутренняя и внешняя тубы используются для циркуляции горячей воды (темперирования), средняя труба для прохождения продукта. Температура продукта контролируется температурными датчиками. Назначение: Пастеризация полученной эмульсии – термическая обработка продукта. 12.1 Шкаф управления пастеризатора Материал: Нержавеющая сталь Состав: PLC и панель оператора, частотные преобразователи, электропроводка пневмоклапана и т.д. Управление пастеризатором может производиться вручную с панели оператора или автоматически от центрального PLC. Параметры: Регулировка скорости, температура, работы клапанов, CIP 12.2 Система темперирования воды для пастеризатора Материал: Нержавеющая сталь. Состав: Трубчатый теплообменник (вода/пар). Насос для циркуляции воды. Система регулировки давления водяного пара (макс. 2 бара). Трубопровод между теплообменником и пастеризатором. 13. Охладитель: Материал: Нержавеющая сталь Конструкция: Система тройных труб. Три трубы вложены друг в друга. Внутренняя и внешняя тубы используются для циркуляции холодной воды (темперирования), средняя труба для прохождения продукта. Температура продукта контролируется температурными датчиками. Подача холодной воды обеспечивается Заказчиком. 14. Уравнительный танк Материал: Нержавеющая сталь Конструкция: Объем 100 л. Танк цилиндрической формы. Верхняя часть и дно танка – конической формы. В верхней части танка размещены: вводные соединения для подачи продукта и CIP, распылительные моющие головки, смотровой лючок с датчиком контроля открытия. На дне размещены: выводное соединение продукта, регулируемые по высоте опоры. 15. Насос высокого давления насос высокого давления 1.jpg насос высокого давления 2.jpg Материал: Все части, находящиеся в контакте с продуктом и внешняя обшивка выполнены из нержавеющей стали. Конструкция и состав: Плунжерный насос высокого давления Производительность регулируется через задание скорости вращения мотора (частотный преобразователь) Мотор имеет систему охлаждения (вентиляции) с автономным электроприводом. Температура мотора контролируется. Узел оборудован демпфер пульсаций, предохранительным клапаном и входным фильтром. Давление продукта на выходе контролируется. Назначение: Насос используется для перекачки эмульсии в кристаллизатор. 16. Переохладитель Материал: Цилиндры выполнены из закаленной стали. Все части, находящиеся в контакте с продуктом – из нержавеющей стали. Конструкция: Теплообменник типа «труба в трубе». На внутреннем полом валу размещены ножи. Пространство между первой и второй трубой и внутренний вал являются испарительными камерами для хладагента (фреон или аммиак, по запросу). Специально конструкция ножей позволяет эффективно снимать продукт со стенок цилиндра. За счет специальной системы изоляции, потери энергии системы практически равны нулю. Все уплотнители предотвращают утечку продукта и рассчитаны на высокое давление. Подключение к центральной системе CIP переохладитель 2.jpg 16.1 Шкаф управления Материал: Нержавеющая сталь Состав: PLC и панель оператора Частотные преобразователи Внутренняя система электропроводки Пневматика Включение/выключение машины, регулировка скорости работы, работа пневмоклапанов могут быть выполнены как вручную, так и автоматически. Автоматизация: Скорости, температура, работа клапанов, CIP 17. Смеситель для механической обработки. Материал: Нержавеющая сталь. Конструкция: Вращающийся внутренний вал и стенки смесителя оснащены специальными стержнями для более плотной механической обработки продукта. Внешняя полая камера являются испарительными камерой для хладагента (фреон или аммиак, по запросу). CIP-мойка. Привод: электродвигатель с редуктором и предохранительной муфтой 18. Кристаллизатор кристаллизатор.jpg Материал: Нержавеющая сталь Конструкция: Труба, состоящая из трех секций. Входная и выходная секции конической формы, центральная секция цилиндрической формы. В центральной секции размещены два тройных сетчатых экрана. Водяной рубашка для теплоизоляции. 19. Станция переплавления Материал: Нержавеющая сталь Конструкция: Система тройных труб. Три трубы вложены друг в друга. Внутренняя и внешняя тубы используются для циркуляции горячей воды (темперирования), средняя труба для прохождения продукта. Температура продукта контролируется температурными датчиками. 19.1 Шкаф управления Материал: Нержавеющая сталь Состав: PLC и панель оператора Частотные преобразователи Внутренняя система электропроводки Пневматика Включение/выключение машины, регулировка скорости работы, работа пневмоклапанов могут быть выполнены как вручную, так и автоматически. Автоматизация: Скорости, температура, работа клапанов, CIP 19.2 Система поддерживания и контроля температуры в станции переплавления Материал: Нержавеющая сталь. Состав: Трубчатый теплообменник (вода/пар). Насос для циркуляции воды. Система регулировки давления водяного пара (макс. 2 бара). Трубопровод между теплообменником и пастеризатором. 20. Система трубопроводов и электропроводки Материал: Нержавеющая сталь Трубопровод CIP Отполирован снаружи Клапаны - в гигиеническом исполнении, управляются как вручную, так и автоматически Трубопровод для продукта: Отполирован снаружи Клапаны – в гигиеническом исполнении, управляются как вручную, так и автоматически Электропроводка и пневматика: Все кабели надежно изолированы, помещены в кабель-каналы из нержавеющей стали 21. Общая пневматика Исполнение: Все пневмотрубки надежно изолированы, помещены в кабель-каналы из нержавеющей стали 22. Общий шкаф управления технологической линии Материал: Нержавеющая сталь Состав: PLC и панель оператора Частотные преобразователи Внутренняя система электропроводки Пневматика Включение/выключение машины, регулировка скорости работы, работа пневмоклапанов могут быть выполнены как вручную, так и автоматически. Автоматизация: Скорости, температура, работа клапанов, CIP 23. Общая автоматизация Исполнение: Общий контроль работы технологической линии, включая все необходимые рецепты.

Промышленное производство маргарина было организовано в 1870 году. Французский химик Меж-Мурье предложил эмульгировать легкоплавкую часть топленого говяжьего жира с молоком в присутствии сычужной вытяжки из желудка коров. Полученную смесь охлаждали в ледяной воде и при этом образовывались полутвердые шарики, которые имели перламутровый блеск. Меж-Мурье назвал их маргарином (>фр. margjaret – жемчуг).

Маргарин представляет собой, подобно сливочному маслу, эмульсию, состоящую из жиров и молока или воды. Маргарин является ценным пищевым продуктом. По усвояемости, которая достигает 93…98 %, он не уступает жирам цельного молока (сливочному маслу), а по энергетической ценности даже превосходит его: в среднем 40,1 кДж/100 г против 38,6 кДж/100 г.

Маргарины в зависимости от назначения и состава подразделяются на следующие группы:

  • столовы и марочные (бутербродные);
  • для промышленной переработки и сети общественного питания;
  • с вкусовыми добавками.

Ассортимент маргариновой продукции, которая выпускается отечественной масложировой промышленностью, насчитывает более 50 наименований.

Назначение маргаринов определяет их товарную форму: они могут быть твердыми, мягкими (наливными) и жидкими. Мягкие маргарины сохраняют пластические свойства при низких положительных температурах, что позволяет использовать их как бутербродные жиры. Жидкие маргарины применяют в хлебопечении, при производстве мучных кондитерских изделий.

Столовые маргарины применяют в качестве бутербродного продукта, а также для приготовления кондитерских и кулинарных изделий. Столовые и марочные маргарины содержат не менее 82 % жира. К ним относятся маргарины молочный, сливочный, «Новый», «Эра», «Экстра» и др. Низкокалорийные маргарины («Столовый», «Радуга», «Солнечный») содержат от 40 до 75 % жира.

Одним из основных направлений улучшения ассортимента и качества маргаринов является расширение возможности их использования в качестве бутербродного жира. Решение этой задачи может быть достигнуто, в частности, за счет расширения выпуска наливных (мягких) маргаринов.

Характеристика сырья

Основным сырьем для производства маргариновой продукции являются жиры и молоко. Структура и вкус маргарина в основном определяются набором жиров, которые входят в его состав. Присутствие различных примесей в исходных жирах не позволяет получить продукцию высокого качества, поэтому все жиры должны быть очищены по полной схеме рафинации, включая отбелку и дезодорацию, и иметь кислотное число не более 0,3 мг КОН/г.

Главным жировым компонентом в рецептуре маргариновой продукции являются гидрированные растительные масла. Наиболее широко применяют саломасы на основе подсолнечного, хлопкового, соевого и низкоэрукового рапсового масел. Переэтерифицированные жиры, которые изготовливаются из смесей растительных масел и животных жиров, используют наравне с саломасами. С их помощью очень удобно варьировать консистенцию маргаринов от мазеобразной до твёрдой. Из животных жиров применяют сливочное коровье и топлёное масло, говяжий, бараний и свиной топленые жиры.

Для производства маргарина используют свежее пастеризованное молоко, предварительно сквашенное специальными молочнокислыми заквасками или коагулированное раствором лимонной кислоты. Соотношение между различными видами молока определяется рецептурой того или иного вида маргарина.

Сквашенное молоко не только обогащает вкус маргарина, но и обеспечивает его стойкость при хранении. Водно-молочная фаза маргарина должна иметь величину рН, равную 3,0…5,5. В такой слабокислой среде замедляет развитие нежелательных микробиологических процессов во время хранения маргарина.

Поскольку маргарин представляет собой застывшую водно-жировую эмульсию, то немаловажную роль в его рецептуре играют поверхностно-активные вещества – эмульгаторы. Кроме своего основного назначения – стабилизировать эмульсию – эмульгаторы улучшают пластичность маргарина, а в производстве пищевых жиров для хлебопечения обеспечивают увеличение пористости мякиша и объёма готового изделия. Наиболее перспективно использование эмульгаторов на основе моно- и диглицеридов.

Кроме того, для придания маргарину естественного цвета сливочного масла в него вводят пищевые красители, а также вкусовые добавки, ароматизаторы, витамины, соль, сахар и другие необходимые по рецептуре компоненты.

Технология производства

В основе производства маргариновой продукции лежат процессы переохлаждения маргариновой эмульсии с ее одновременной механической обработкой. Технологическая схема производства зависит от того, в какой товарной форме будет выпускаться готовая продукция.

Технологический процесс получения маргарина, например, в твердой товарной форме включает следующие операции:

  • дозирование, смешение и эмульгирование исходных компонентов;
  • переохлаждение и кристаллизация эмульсии;
  • фасовка готового продукта.

При получении жидких маргаринов исключаются операции кристаллизации и фасовки: продукт в переохлажденном текучем состоянии отгружается в автоцистернах.

При рассмотрении технологического процесса необходимо представлять особенность построения рецептур маргаринов. Она заключается в том, что в состав маргаринов входят два укрупненных рецептурных компонента:

  • жировая основа;
  • водно-молочная фаза.

Жировая основа представляет собой смесь жидких и твердых жиров различной пластичности. Она в значительной степени определяет товарный вид, вкусовые качества и технологические свойства маргариновой продукции.

Водно-молочная фаза представляет собой раствор в смеси молока и воды различных водорастворимых компонентов маргарина. Она должна обеспечивать достижение органолептических показателей маргарина, которые приближаются к сливочному маслу.

На долю жировой основы приходится 60…80 % от массы маргарина, на долю водно-молочной фазы – 20…40 %. Таким образом, маргарины, выпускаемые отечественной промышленностью, относятся к эмульсиям прямого типа.

Дозирование, смешение и эмульгирование

Жировая основа и водно-молочная фаза готовятся отдельно друг от друга, поэтому они должны быть хорошо смешены. Для смешения используют смесители с винтовой мешалкой, которая вращается со скоростью около 1 об/с. Водно-молочная смесь вводится в смеситель при температуре 15…20 о С, а жиры – при температуре на 4…5 о С выше их температуры плавления. Далее смешение и эмульгирование проводится при температуре 38…40 о С.

Переохлаждение и кристаллизация. Эти операции являются основными в технологии производства маргарина. Их сущность состоит в том, что жидкую маргариновую эмульсию охлаждают и кристаллизуют в строго контролируемых условиях, а полученной таким образом пластичной массе придают необходимую товарную форму. Причем формирующаяся при этом кристаллическая структура жировой основы определяет важнейшие качественные показатели готового маргарина: его консистенцию, диапазон пластичности, температуру полного расплавления.

При охлаждении маргариновая эмульсия претерпевает ряд полиморфных превращений, которые связаны с переходом менее устойчивых, метастабильных кристаллических форм через промежуточные к устойчивым, стабильным кристаллическим модификациям. Наиболее низкоплавкая, метастабильная кристаллическая структура обозначается как α-форма, переходная, средняя структура – как β′-форма и наиболее высокоплавкая, стабильная структура – как β-форма.

На формирование кристаллической структуры маргарина оказывают влияние следующие факторы:

  • скорость охлаждения – при значительной скорости охлаждения образуется неустойчивая кристаллическая модификация;
  • скорость перемешивания – при быстром перемешивании образуется более гомогенная смесь с мелкокристаллической структурой;
  • содержание насыщенных и ненасыщенных глицеридов – чем больше в жировой фазе маргарина глицеридов ненасыщенных жирных кислот, тем выше доля неустойчивых кристаллических модификаций.

При медленном охлаждении маргариновой эмульсии происходит последовательная кристаллизация глицеридов в соответствии с их температурой застывания. В результате образуются крупные кристаллы, характерные для наиболее высокоплавкой устойчивой кристаллической β-формы. Наличие в маргарине β-формы обуславливает неоднородность его структуры, придает готовому продукту грубый вкус, «мучнистость», «мраморность» и т.д. В процессе хранения такой маргарин приобретает хрупкость.

При быстром охлаждении наблюдается переохлаждение системы, и образование кристаллов начинается при температуре более низкой, чем температура застывания жиров. В этом случае становится возможным образование более низкоплавких, менее устойчивых кристаллических форм.

Кристаллы жира в маргарине обычно присутствуют в β′-форме; переход же в β-форму отрицательно влияет на консистенцию маргарина из-за образования более крупных кристаллов. Такой переход может произойти, в частности, при хранении маргарина при повышенной температуре.

Для достижения однородной структуры маргарина после глубокого охлаждения необходимо интенсивное перемешивание и относительно длительная механическая обработка. При этом мелкодиспергированные
кристаллы твердой фазы образуют в жидкой фазе коагуляционные структуры (рисунок 1).

Рисунок 1 — Коагуляционные структуры маргарина

Благодаря наличию подобных структур маргарин при хранении менее подвержен образованию твёрдых кристаллических модификаций.

Основным аппаратом при производстве маргарина методом переохлаждения является переохладитель, который обеспечивает тонкое эмульгирование, охлаждение и механическую обработку маргариновой эмульсии. Переохладитель состоит из нескольких трубчатых теплообменников, соединенных последовательно. Температура эмульсии при прохождении через переохладитель сравнительно быстро понижается (за счет использования жидкого аммиака) с 38…40 о С до 10… 12 о С. Завершение формирования необходимой кристаллической структуры происходит в кристаллизаторе, представляющем собой цилиндрический аппарат, который снабжен фильтром-гомогенизатором. В кристаллизаторе маргарин доводится до требуемой твердости, однородности и пластичности.

Готовый маргарин фасуется в соответствующую тару фасовочными автоматами.

Производство пищевых жиров

К пищевым жирам относятся кондитерские, хлебопекарные и кулинарные жиры. Эти жиры не содержат водно-молочной фазы и целиком состоят из смеси растительных масел, гидрированных и переэтерифицированных жиров, а также животных жиров. В зависимости от назначения они могут содержать такие добавки, как эмульгатор, краситель, витамины и ароматизаторы.

Технология изготовления пищевых жиров существенно проще технологии маргарина, т.к. в ней отсутствуют операции, связанные с подготовкой водно-молочной фазы. В остальном технологический процесс и производственные линии сходны с технологией и линиями по производству маргарина.

Особенностью получения пищевых жиров является необходимость соблюдать такие технологические режимы, которые бы обеспечили хорошую подвижность и дозируемость продукта при его фасовке в крупную тару (10…20 кг). Кроме того, необходимо, чтобы продукт быстро принимал в таре необходимую форму и при этом сохранял однородную консистенцию. Для этого после операции переохлаждения производят дополнительную механическую обработку с целью декристаллизации структуры получаемого продукта.

Такой интенсивной механической обработке пищевые жиры подвергаются в декристаллизаторах.

Они представляют собой три последовательно соединенных между собой горизонтальных цилиндра, которые снабжены валами с установленными на них билами (рисунок 2). Частота вращения валов около 100 оборотов в минуту.

Рисунок 2 — Элемент декристаллизатора

После декристаллизатора продукт не теряет текучести при наливе даже в крупную тару, например, короба. Готовые пищевые жиры приобретают пластичную консистенцию, которая сохраняется длительное время при пониженных температурах.

Производство майонеза

Майонез является пищевым продуктом, который используется в качестве приправы к различным кулинарным блюдам для повышения их питательности и придания характерного вкуса. В настоящее время отчественная масложировая промышленность выпускает майонезы, которые представляют собой микрогетерогенную систему – эмульсию типа «вода в масле». В них дисперсионной средой является вода с растворёнными в ней компонентами, а дисперсной фазой – растительное масло. Принципиальное отличие заключается в том, что дисперсная фаза в маргарине представлена жиром, находящимся в твёрдом или пластичном состоянии, а в майонезе дисперсная фаза жидкая.

Ассортимент

Майонезы в зависимости от их состава и назначения подразделяют на столовые, диетические, с пряностями, с вкусовыми и желирующими добавками, для детского питания. Наибольшее распространение имеют столовые майонезы («Провансаль», «Любительский») и майонезы с пряностями («Весна»).

Основное сырье

К основному сырью, которое используется для производства майонезов, относятся:

  • рафинированные дезодорированные растительные масла;
  • сухое молоко;
  • яичный порошок;
  • сахар, соль, уксусная кислота, горчица;
  • пищевые и вкусовые добавки.

Из растительных масел используют в основном подсолнечное, реже соевое и хлопковое. К растительным маслам предъявляются высокие требования по их чистоте и органолептическим характеристикам. В частности, они не должны содержать даже незначительных примесей саломаса, т.к. его присутствие приводит к разрушению майонезной эмульсии.

Сухое молоко и яичный порошок, кроме собственно пищевой функции, играют роль эмульгаторов. Кроме того, сухое молоко является одновременно и структурообразователем, поскольку белки молока в присутствии влаги способны набухать. Это помогает удерживать влагу и обеспечивает структурирующее действие в отношении всех компонентов майонеза.

Соль придает вкус продукту и оказывает консервирующее действие.

Сахар, уксусная кислота и горчица выполняют, в основном, роль вкусовых добавок.

В качестве примера можно привести базовую рецептуру широко распространённого в нашей стране столового майонеза «Провансаль» (в %%):

Технология

Технологический процесс производства майонеза на автоматизированной линии состоит из следующих операций:

  1. подготовка, дозировка, смешение компонентов и получение грубой майонезной эмульсии;
  2. фильтрация, деаэрация и механическая обработка грубой майонезной эмульсии;
  3. розлив майонеза.

В отдельной емкости готовят водно-уксусный раствор с концентрацией, которая соответствует рецептурному содержанию воды и уксусной кислоты в вырабатываемом виде майонеза. Приготовленный раствор уксусной кислоты перекачивают в смеситель. Туда же дозируются сыпучие компоненты в такой последовательности: яичный порошок, затем – через некоторое время – сухое молоко, горчичный порошок, сахар, соль, сода и растительное масло. Последовательность загрузки компонентов имеет в данном случае принципиальное значение. В результате перемешивания получают грубую майонезную эмульсию.

Грубую майонезную эмульсию перекачивают насосами через фильтры в деаэратор. Здесь под вакуумом из эмульсии удаляется воздух и частично легколетучие ароматические вещества горчицы. Далее эмульсия направляется в специальный аппарат (вотатор), где она обрабатывается при температуре 53…55 о С и быстро охлаждается ледяной водой. После чего эмульсия поступает в двухступенчатый высокоскоростной гомогенизатор, откуда уже тонкодисперсная майонезная эмульсия подаётся в приёмный бак готовой продукции.

Фасовка майонеза проводится на автоматизированных поточных линиях в различную тару: стеклянные и пластмассовые банки, пластиковые пакеты.